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LETTER TO THE EDITOR 

Existence of low-temperature critical regime in a 
one-dimensional Luttinger liquid with a weak link 

A M Tsvelik 
Department of Physics, University otOxford, 1 Keble Road, Oxford, OX1 3NP, UK 

Received 8 August 1995 

Abstract. The exact solution of the boundary sineGordon model is studied in the region 
where the scaling dimension of the boundary field $ c A < 1. The boundary contribution lo 

the specific heat in this region scales as C - T26-‘-2 at small temperatures. 

The problem of potential scattering in Luttinger liquids has attracted a great deal of attention 
since Kane and Fisher [ I ]  mapped it onto the Schmid model [2]. The latter model is 
described by the following action: 

S = So + M d r  cos (B@(O, r ) / 2 )  
J 

Here the parameter B is determined by interactions in the bulk. It is well established that 
in the region A = BZ/2n c 1 where the cosine term is relevant the model scales to the 
strong-coupling fixed point described by the effective action 

Serf = So + $ dt[T&(O, t)’+ TB COS ( 2 ~ @ ( 0 ,  r) /B)]  (2) s 
where 

TB,  iB - M ( M / A ) ~ / ( ’ - ~ )  

and A is the ultraviolet cut-off. 
The robustness of the effective action (2 )  has been proven by the instanton expansion 

for A << 1 [l, 31, by the transformation to the equivalent-free fermion model (A = $) [4,5] 
and by the exact solution (A < 4) [6,7]. The dual cosine is generated by the instanton 
expansion of the cos(B@/2)-potential and is always present in the low-energy effective 
action. However, for A < f its contribution is less important than that of the @*-term. One 
of the purposes of this letter is to demonstrate that for the effective action A < $ the dual 
cosine becomes dominant. This becomes obvious when one calculates the first correction 
from this the irrelevant operator to the specific heat. At large times r >> l/TB, the @*-term 
is equivalent to the Neumann boundary condition on the @-field, which, due to the duality, 
gives the Dirichlet boundary condition on the @-field 

(3) 
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@ ( x  = 0) = 0 & S ( X  = 0) = 0 .  
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Taking this into account we get the following correlation function for the dual cosine: 

(cos ( z w w b )  cos (2ne(O)/b)) - sinnTr 

Cbuundary (A z 3)  - TlnT(A = :). (5) 

(4) 

From here we get the following estimate for the contribution of the dual cosine to the 
specific heat: 

( jrT )"rip2. 
TZfb.-' 

As we see, at f < A < 1 this contribution dominates over the linear term generated by 
the @*-potential [8,9]. The rest of the letter is,devoted to the Bethe ansatz solution of the 
model (1) in the region $ 6 A < 1. 

Despite the fact that the boundary sineGordon (BSG) model (1) has been solved exactly 
in the sense that exact S-matrices have been found [6], the complexity of the solution in 
the area A > has prevented it from being studied. At A = l /u ,  U = 2,3, ... the 
thermodynamic Bethe ansatz (TBA) equations were obtained by Fendley et nl [7]: 

€"(U) = q8n,l exp(--au/2) +s *1n[l +efn-l(")J [I +ef*+i(") 1 
+a "."- 2s * In [ 1 + er"(")] (n = 1, . . . U - 1) 

€"(U) = 5 * In [ 1 + e6"-2(")] 
2 lI[ H 

l&=-T s u + - l n ( T ~ / T )  

1 
L -m 
-FbulK = -T Sm $[U + 
with q = + I .  Here 

Equations (6) are very similar to the equations for the conventional sine-Gordon model. 
In the latter case there is a duality: "BA equations are invariant under the transformation 

A +  1 - A = l / u  (9) 
except for the free term in the first equation (6), which changes its sign: q = -1. Therefore 
we suggest that TBA equations for the BSG problem at A = 1 - l/v are given by (6) and (7) 
with q = -1. We have two additional arguments in favour of this proposal. The first one 
is that the suggested transformation works for the anisotropic spin-; Heisenberg chain with 
open boundary conditions [SI. It is widely believed that the latter model adequately describes 
the strong-coupling point of the BSG model. Indeed, at strong coupling the scattering 
potential becomes infinite which effectively breaks the chain. The equivalency between 
the Luttinger liquid of spinless fermions and the spin-; Heisenberg chain is established by 
the Jordan-Wigner transformation. The second argument is that at A = one can derive 
TBA equations for BSG model using its equivalency with the four-channel anisotropic Kondo 
model in the Toulouse limit [9] .  We shall present the latter argument in detail. 

The Bethe ansatz equations for an anisotropic k-channel Kondo model are given by 
M 

[ek(q; U , ) Y " ~ ~ ( V ;  - I/g) = ne2(77; U, - ub) (10) 
b=l 
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sinh[q(u - in)] 
sinh[q(u i- in)] e n ( x  U) = 

where S is the impurity spin, g is the Kondo coupling constant, q is the anisotropy, N is 
the length of the system and M = kN/2 + S - Sz is the number of up spins. The universal 
relationship between the quantities g and q and the parameters of the Hamiltonian exists 
only in the limit of weak anisotropy q << 1. The difficulty determining the Toulouse limit 
is resolved if we suggest that this limit corresponds to the maximal value of q at which 
the IR fixed point of the Kondo model still belongs to the same universality class as at 
q --f 0. The periodicity of the trigonometric factors in (10) suggests that the Toulouse limit 
is realized at q = n/2(k + l/u) ( w  4 00). This iimit has been considered in [lo, 111 and 
the detailed derivation of TBA equations is given in [12]. It was shown that TBA equations 
in the Toulouse limit have the following form: 
c,, = s ~ I n ( l + e ~ ~ - L ) ( l + e ~ " + ' ) + S n . ~ ~ ~ ~ ~ I n ( l + e f P )  (13) n = 1, .. ., k - 1 

ek = s * l n ( l  +eft-') -2exp(-au/2) (14) 
m 

hulk = -NT2[mdue-""~21n(l +e") (15) 

.. 

where the temperature T, is defined as 
ZA 

TB = lim - exp(-rr/2g) . "..%+cc 2 u  
Executing this limit one has to be careful to keep the energy scale TB finite. Substituting into 
these equations S = and k = 4 we reproduce the suggested equations for the BSG model 
with A = $ (i.e. U = 4, q = -1). The fact that this equivalency holds only for k = 4 is 
not surprising. The conformal charge of those bulk degrees of freedom in the k-channel 
Kondo model which are coupled to the impurity spin is equal to [13,14] 

C=-- (17) 
3k 

k + 2 '  
At k = 4 it is equal to 2 which corresponds to two bosonic modes interacting with the 
impurity. In the Toulouse limit one of these modes decouples from the impurity and the 
effective conformal charge becomes I .  

Now we shall calculate the IR and UV asymptotics of the boundary free energy for the 
BSG model with A = 1 - l / u .  Analytical solutions are available for asymptotics of cn(u) 
at U -+ fw (see, for example, [15]). At large temperatures T >> TB the free energy is 
determined by the asymptotics at U 4 +co where 

so that we have 
(I +efv-') = U (18) 

T 
Fboundnry 4 -- In U . (19) 2 

At small temperatures the leading contribution comes from the region U -+ 0 where 
&(U # 1) are again almost constant and exp(6,) is small. Then the corrections can be 
determined from the expansion in exp(c,): 

g, ( u )  In (1 + e'"(")) = gio) + gA"(u) + . . . 
gAo) = 21nn (n = 2,3, ... U - 2 )  gp, = g,?ln(u - 1) (20) 
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sinh(u - n ) o  
smh(v - 1)o ' a,(@) = . 

Using these expressions we get the following expansion for the free energy: 
T 

Fbowdary + -- .? In(v - 1) 

where 
tanh w f(d= . 

Slnh(V - 1)o. 

The first term in (22) gives the finite entropy of the ground state S(0) = -f ln(A-l - 1). 
A careful analysis shows that this entropy disappears at A < $. The ratio of the partition 
functions in the ultraviolet and the in&ared limits is 

Z u v / Z I R  = (23) 
This result reproduces the expression obtained for A < 3 in [7]. At small TIT8 one can 
expand the second term in (22). The expansion is dictated by poles of the function f (U). 
In the lowest order it gives S&iP - -T'+2''y-L' which leads to (5). 

The author expresses his gratitude to P Coleman, M Evans, E Fradkin, L Ioffe and P de Sa 
for the valuable discussions and interest in the work. 
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